SOME DERIVATIVES

OF 4-[(2-AMINO-6-HYDROXY-4-OXO-3,4-DIHYDRO-5-PYRIMIDINYL)METHYL] BENZOIC ACID*

Rudolf Kotva, Jaroslav Vachek and Jiři Křepelka
Research Institute for Pharmacy and Biochemistry I30 60 Prague 3

Received November 121h, 1981

Esterification of the title acid (I) gave esters $I I-V I$. Halogenation of the acid I afforded its 5 -chloroand 5-bromo derivatives, VII and VIII. Condensation of triesters XIV - XVII and of tetraester XV'III with guanidine, followed by hydrolysis, led to acids $I X-X I I I$. Some of these compounds had a weak antineoplastic activity in animals with experimental transplantable tumours.

The paper deals with synthesis of esters of 4 -[(2-amino-6-hydroxy-4-oxo-3,4-di-hydro-5-pyrimidinyl)methyl]benzoic acid, $I 1-V I$, and of 5 -substituted 4 -[(2-amino-$-4,6$-dioxo-3,4,5,6-tetrahydro-5-pyrimidinyl)methyl]benzoic acids, VII-XIII. These esters were prepared as part of our study of derivatives of $4-[(2$-amino- 6 -hydroxy--4-oxo-3,4-dihydro-5-pyrimidinyl)methyl] benzoic acid ${ }^{1}(I)$, which exhibited an antineoplastic effect in animals with experimental transplantable tumours; the present paper is a sequel to the preceding comunication of this series ${ }^{2-5}$.

The compounds $I I-X I I I$ can occur in various tautomeric forms. Judging by the analogous courses of the IR and UV spectra we suppose that $I I-V I$ in the solid

I, $\mathrm{R}^{1}=\mathrm{H}$
II, $\mathrm{R}^{1}=\mathrm{CH}_{3}$
III, $\mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}$
$I V, \mathrm{R}^{1}=\mathrm{C}_{3} \mathrm{H}_{7}$
$V, \mathrm{R}^{1}=\mathrm{C}_{4} \mathrm{H}_{0}$
VI, $\mathrm{R}^{1}=\mathrm{C}_{7} \mathrm{H}_{15}$

$\begin{aligned} \text { VII, } \mathrm{R}^{2} & =\mathrm{Cl} \\ \text { VIII, } \mathrm{R}^{2} & =\mathrm{Br} \\ \text { IX, } \mathrm{R}^{2} & =\mathrm{C}_{3} \mathrm{H}_{7} \\ X, \mathrm{R}^{2} & =\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \\ \text { XI, } \mathrm{R}^{2} & =\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \\ \text { XII, } \mathrm{R}^{2} & =\mathrm{C}_{6} \mathrm{H}_{5} \\ \text { XIII, } \mathrm{R}^{2} & =\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}\end{aligned}$

* Part LXXXIV in the series Substances with Antineoplastic Activity, Part LXXXIII: This Journal 48, 292 (1983).

Table I
Derivatives of 4-[(2-amino-6-hydroxy-4-oxo-3,4-dihydro-5-pyrimidinyl)methyl]benzoic acid

Number	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathrm{C} \\ & \text { (yield. \%) } \end{aligned}$	Formula (mol.mass)	Calculated/Found			$\begin{gathered} \text { UV spectra } \\ i_{\text {max }}, \operatorname{nm}(\log \varepsilon) \end{gathered}$	
			\% C	\% H	\% N	A	B
I^{a}	$324-326^{b}$ (70)	$\underset{(275 \cdot 3)}{\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}}$	$\begin{aligned} & 56 \cdot 72 \\ & 56 \cdot 94 \end{aligned}$	$\begin{aligned} & 4 \cdot 76 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 15 \cdot 27 \\ & 15 \cdot 14 \end{aligned}$	-	$\begin{aligned} & 267(4 \cdot 24)^{c} \\ & 242(4 \cdot 27) \end{aligned}$
$1 I^{4}$	$316-318^{e}$ (72)	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \\ (289 \cdot 3) \end{gathered}$	$\begin{aligned} & 58 \cdot 12 \\ & 57.89 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 12 \end{aligned}$	$\begin{aligned} & 14.53 \\ & 14.50 \end{aligned}$	\cdots	$\begin{aligned} & 267(4 \cdot 18)^{c} \\ & 245(4 \cdot 30) \\ & 207(4 \cdot 47) \end{aligned}$
IV ${ }^{\text {s }}$	$303-305^{g}$ (80)	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \\ (303 \cdot 3) \end{gathered}$	$\begin{aligned} & 59 \cdot 40 \\ & 58 \cdot 85 \end{aligned}$	$\begin{aligned} & 5 \cdot 65 \\ & 5 \cdot 55 \end{aligned}$	$\begin{aligned} & 13.85 \\ & 13.77 \end{aligned}$	-	$\begin{aligned} & 262 \mathrm{i}(4 \cdot 28)^{c} \\ & 244(4 \cdot 39) \end{aligned}$
V^{h}	$\begin{gathered} 294-297^{g} \\ (77) \end{gathered}$	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \\ (317.3) \end{gathered}$	$\begin{aligned} & 60 \cdot 56 \\ & 60 \cdot 45 \end{aligned}$	$\begin{aligned} & 6.03 \\ & 6.12 \end{aligned}$	$\begin{aligned} & 13.24 \\ & 13.43 \end{aligned}$	-	$\begin{array}{ll} 265(4 \cdot 24)^{c} \\ 241(4 \cdot 29) \end{array}$
$V I^{i}$	$291-293^{g}$ (64)	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \\ (359 \cdot 4) \end{gathered}$	$\begin{aligned} & 63 \cdot 49 \\ & 62 \cdot 97 \end{aligned}$	$\begin{aligned} & 7.01 \\ & 6.94 \end{aligned}$	$\begin{aligned} & 11 \cdot 69 \\ & 11.80 \end{aligned}$	-	$\begin{aligned} & 270(4 \cdot 28)^{c} \\ & 247(4 \cdot 26) \end{aligned}$
$V I^{j . k}$	$\begin{gathered} <360^{g} \\ (90) \end{gathered}$	$\underset{(295 \cdot 7)}{\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}}$	$\begin{aligned} & 48 \cdot 74 \\ & 48 \cdot 49 \end{aligned}$	$\begin{aligned} & 3.41 \\ & 3.69 \end{aligned}$	$\begin{aligned} & 14 \cdot 21 \\ & 14 \cdot 46 \end{aligned}$	236 (4.31)	$\begin{aligned} & 270 i(3 \cdot 77) \\ & 234(4 \cdot 33) \end{aligned}$
$V I I I^{I . m}$	$\begin{gathered} g . n \\ (98) \end{gathered}$	$\underset{(340 \cdot 2)}{\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{4}}$	$\begin{aligned} & 42 \cdot 37 \\ & 42 \cdot 19 \end{aligned}$	$\begin{aligned} & 2 \cdot 96 \\ & 3.32 \end{aligned}$	$\begin{aligned} & 12 \cdot 35 \\ & 12 \cdot 29 \end{aligned}$	234 (4.34)	238 (4.31)
$1 X^{\text {o.p }}$	$339-341^{9}$ (76)	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \\ \hline(03.3) \end{gathered}$	$\begin{aligned} & 59 \cdot 40 \\ & 60 \cdot 11 \end{aligned}$	$\begin{aligned} & 5.65 \\ & 5.69 \end{aligned}$	$\begin{aligned} & 13.85 \\ & 13.72 \end{aligned}$	$\begin{aligned} & 260 i(3.57) \\ & 230 i(4 \cdot 18) \end{aligned}$	$\begin{aligned} & 265(4 \cdot 06) \\ & 225(4 \cdot 49) \end{aligned}$
$\chi^{\text {r.s }}$	$\begin{gathered} 335-337^{q} \\ (58) \end{gathered}$	$\underset{(301 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}}$	$\begin{aligned} & 59 \cdot 79 \\ & 59 \cdot 49 \end{aligned}$	$\begin{aligned} & 5.02 \\ & 5.06 \end{aligned}$	$\begin{aligned} & 13.95 \\ & 14.24 \end{aligned}$	230i (4.09)	$\begin{aligned} & 264(3 \cdot 82) \\ & 217(4 \cdot 60) \end{aligned}$
$X I^{t, u}$	$\begin{array}{r} <360^{q} \\ (48) \end{array}$	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \\ (299 \cdot 3) \end{gathered}$	$\begin{aligned} & 60 \cdot 20 \\ & 59 \cdot 96 \end{aligned}$	$\begin{aligned} & 4 \cdot 38 \\ & 4 \cdot 23 \end{aligned}$	$\begin{aligned} & 14 \cdot 04 \\ & 13.80 \end{aligned}$	230i (4-27)	$\begin{array}{ll} 265(4.01) \\ 225(4.50) \end{array}$
XII ${ }^{v . x}$	$324-327^{q}$ (99)	$\underset{(337 \cdot 4)}{\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}}$	$\begin{aligned} & 64 \cdot 09 \\ & 64 \cdot 32 \end{aligned}$	$\begin{aligned} & 4 \cdot 48 \\ & 4 \cdot 67 \end{aligned}$	$\begin{aligned} & 12.46 \\ & 12.21 \end{aligned}$	235 (4.35)	$\begin{aligned} & 265(3.95) \\ & 228(4.52) \end{aligned}$
$X 11 I^{y, z}$	$317-319^{e}$ (57)	$\underset{(261 \cdot 3)}{\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}}$	$\begin{aligned} & 56 \cdot 50 \\ & 56 \cdot 23 \end{aligned}$	$\begin{aligned} & 5 \cdot 30 \\ & 5 \cdot 01 \end{aligned}$	$\begin{aligned} & 11 \cdot 63 \\ & 11 \cdot 30 \end{aligned}$	$\begin{array}{ll} 234 & (4 \cdot 21) \\ 201 & (4 \cdot 53) \end{array}$	$\begin{aligned} & 263(3 \cdot 99) \\ & 226(4 \cdot 46) \end{aligned}$

[^0]state have the structure of esters of 4-[(2-amino-6-hydroxy-4-oxo-3,4-dihydro--5-pyrimidinyl) methyl]benzoic acid, whereas VII-XIII are 5-substitution derivatives of 4-[(2-amino-4,6-dioxo-3,4,5,6-tetrahydro-5-pyrimidinyl] methyl) benzoic acid.

The esters $I I-V I$ were prepared as decribed by Brenner and coworkers ${ }^{6-8}$. The acid $V I I\left(\mathrm{R}^{2}=\mathrm{Cl}\right)$ was obtained by chlorination of the acid I with a mixture of dilute hydrochloric acid and 30% hydrogen peroxide, the acid VIII ($\mathrm{R}^{2}=\mathrm{Br}$) by bromination of I with bromine. The compounds $I X-X I I I$ were synthetized by the procedure described for the preparation of 5-substitution derivatives of barbituric, thiobarbituric and iminobarbituric acids ${ }^{9-11}$), i.e. by condensation of 2 -substituted triellyyl esters of 2-(4-carboxybenzyl)-1,3-propanedioic acid, XIV-XVIII, with guanidine in methanol containing sodium methoxide as condensation agent. The formed ethyl esters of $I X-X I I I$ were directly (without isolation) hydrolysed with sodium hydroxide to the free acids.

2-Substituted triethyl esters of 2-(4-carboxybenzyl)-1,3-propanedioic acid, XIV to XVIII, were prepared by a described procedure ${ }^{1}$, viz, by alkylation of a 2 -substituted diethyl 1,3-propanedioate with ethyl 4-bromomethylbenzoate in ethanol containing sodium ethoxide.
wide band); ${ }^{j}$ IR spectrum: $3020,3220\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1730,2500,3200$ (carboxyl, wide band), 1680 (carbonyl), $1610\left(\mathrm{NH}_{2}\right), 1640(\mathrm{C}==\mathrm{N}) .1490,1570$ (benzene ring); ${ }^{k}$ For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$ (295.7) calculated 11.99 Cl ; found $11.26 \% \mathrm{Cl} ;{ }^{1}$ IR spectrum: $3010,3190\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1730$, 2500. 3200 (carboxyl, wide band), 1680 (carbonyl), $1610\left(\mathrm{NH}_{2}\right), 1635(\mathrm{C}=\mathrm{N}), 1490,1570$ (benzene ring); ${ }^{m}$ For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{4}$ ($340 \cdot 2$) calculated: $23.49 \% \mathrm{Br}$; found: $22.97 \% \mathrm{Br}$; ${ }^{\text {n }}$ Decomposition about $280^{\circ} \mathrm{C}$ without melting ${ }^{\circ}$ IR spectrum: 1730, 3060 (carboxyl, wide band), 1700 (carbonyl), 1640 ((lactam), $3400,31 \epsilon 0(\mathrm{NH}), 1500,1570,1620$ (aromatic bands), ${ }^{p}$ Intermediate triethyl 2 -propyl-2-(4-carboxybenzyl)-1,3-propanedioate (XIV), prepared analogously tw', b.p. $182-186^{\circ} \mathrm{C} / 27 \mathrm{~Pa}$, for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ (364.4) calculated: $65.91 \% \mathrm{C}, 7.74 \% \mathrm{H}$; found: $65.56 \% \mathrm{C}, 7.92 \% \mathrm{H}:{ }^{q}$ Purified by reprecipitation from dilute solution in NaOH with HCl ; ${ }^{r}$ IR spectrum: 1 700, 2700 (carboxyl, wide band), 1505,1570 (benzene ring), 1640 (lactam), 3400. $3160(\mathrm{NH}) .{ }^{5}$ Intermediate triethyl 2-allyl-2-(4-carboxybenzyl)-1,3-propanedioate (XV) . prepared analogously 10^{1}, b.p. $174-179^{\circ} \mathrm{C} / 27 \mathrm{~Pa}$; for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}(362 \cdot 4)$ calculated: $66 \cdot 28 \% \mathrm{C}$, $7.23 \% \mathrm{H}$, found: $65.92 \% \mathrm{C}, 7.26 \% \mathrm{H} .{ }^{t}$ IR spectrum: 2280 (C引C), 3370,3270 (NH), 1730 , 2700 (carboxyl, wide band), 1690 (carbonyl), 1630 lactam; " Intermediate triethyl 2-propargyl--2 -(4-carboxybenzyl)-1,3-propanedioate ($X V I$), prepared analogously to ${ }^{1}$, b.p. $184-186^{\circ} \mathrm{C} / 27 \mathrm{~Pa}$; for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}(360 \cdot 4)$ calculated: $66.65 \% \mathrm{C}, 6.71 \% \mathrm{H}$; found: $66.27 \% \mathrm{C}, 6.89 \% \mathrm{H}$. ${ }^{v}$ IR spectrum: 1625 (lactam), 1710,2760 (carboxyl, wide band), $1510,1575,1630$ (benzene ring), 1680 (carbonyl), $3200,3260\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$. ${ }^{x}$ Intermediate triethyl 2-phenyl-2-(4-carboxybenzyl)--1,3-propanedioate (XVII), prepared analogously to ${ }^{1}$, b.p. $198-204^{\circ} \mathrm{C} / 52 \mathrm{~Pa}$; for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$ (398.4) calculated: $69.33 \% \mathrm{C}, 6.58 \% \mathrm{H}$, found: $68.97 \% \mathrm{C}, 6.59 \% \mathrm{H}$; ${ }^{\text {y }}$ IR spectrum: 3410 (NH, $\left.\mathrm{NH}_{2}\right), 3100\left(\mathrm{NH}_{3}^{+}\right), 1700,1730,2700$ (carboxyls, wide band), 1625 (lactam), 1640 (carbonyl), I 510, 1580 (benzene ring), ${ }^{z}$ Intermediate tetraethyl 2-(4-carboxybutyl)-2-(4-carboxybenzyl)--1.3-propanedioate (XVIII), prepared analogously to ${ }^{\prime}$, b.p. $246-251^{\circ} \mathrm{C} / 130 \mathrm{~Pa}$, purified by column chromatography on silica gel, elution with chloroform; for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8}$ ($450 \cdot 5$) calculated: $63.98 \% \mathrm{C}, 7.61 \% \mathrm{H}$; found: $63.46 \% \mathrm{C}, 7.59 \% \mathrm{H}$.

$$
\begin{aligned}
X I V, \mathrm{R}^{2} & =\mathrm{C}_{3} \mathrm{H}_{7} \\
X V, \mathrm{R}^{2} & =\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \\
X V I, \mathrm{R}^{2} & =\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}
\end{aligned}
$$

In the screening for antineoplastic activity in animals with experimental tumours the acid VIII exhibited a moderate effect. In a dose of $100 \mathrm{mg} / \mathrm{kg}$ administered s.c. to mice with tumours Sa 37 it reduced the size of the tumours by 31%, in a dose of $50 \mathrm{mg} / \mathrm{kg}$ by 25%, but did not extend the survival. The acid $X, 100 \mathrm{mg} / \mathrm{kg}$ s.c., extended the survival of mice with tumours S 180 and with Yoshida tumours by 20% and 21%, respectively. The esters $I I-V I$ exhibited no antineoplastic activity whatever. The tested compounds seemed to be non-toxic.

EXPERIMENTAL

The melting points, determined on the Kofler block, are not corrected. The analytical samples were dried at a pressure of 27 Pa over $\mathrm{P}_{2} \mathrm{O}_{5}$ at temperatures adequate to their melting points. The UV spectra of compounds $I I-V I$ were measured, employing a spectrophotometer Unicam SP 8000 , in $0 \cdot 1 \mathrm{~m}-\mathrm{HCl}$ in 50% methanol (A), or $0 \cdot 1 \mathrm{~m}-\mathrm{NaOH}$ in 50% methanol (B) or in methanol (C). The IR spectra in KBr pellets were recorded with an apparatus Hilger-Watts. The individuality of the compounds was verified by TLC in a system chloroform-methanol- 25% ammonia ($2: 2: 1$), or propanol- 25% ammonia-water (7:1:2), using FP-Kieselgel F_{254} Merck, migration distance 15 cm , and detection with UV light, or reflex silica gel foils with a luminiscent indicator (Silufol UV $_{254}$, Kavalier).

Butyl 4-[(2-Amino-6-hydroxy-4-oxo-3,4-dihydro-5-pyrimidinyl)methyl]benzoate (V)
To 300 ml of butanol was added dropwise, under stirring and cooling to -35 to $-40^{\circ} \mathrm{C}, 7.84 \mathrm{~g}$ $(0.066 \mathrm{~mol})$ of thionyl chloride, then $7.83 \mathrm{~g}(0.03 \mathrm{~mol})$ of the acid I was added in portions and the suspension was stirred for 2 h at $40^{\circ} \mathrm{C}$ and for another 2 h at $80^{\circ} \mathrm{C}$. The excess of butanol was distilled off under reduced pressure and the residue was stirred up with 400 ml of water. The suspension was neutralized with sodium hydrogen carbonate and left standing overnight. The separated product was collected on a filter and purified; yield 11.01 g of the ester V. Using the same procedure and the corresponding alcohols we prepared the esters $I I-I V$ and $V I$ (Table I).

4-[(2-Amino-4,6-dioxo-5-chloro-3,4,5,6-tetrahydro-5-pyrimidinyl)methyl]benzoic Acid (VII)
$7.84 \mathrm{~g}(0.03 \mathrm{~mol})$ of the acid I was suspended in a mixture of 240 ml of 10% hydrochloric acid and 48 ml of 30% hydrogen peroxide. The mixture was left standing for a fortnight at room, temperature with an occasional shaking. The product was collected on a filter and purified; yield 8.00 g of the acid VII.

4-[(2-Amino-4,6-dioxo-5-bromo-3,4.5,6-tetrahydro-5-pyrimidinyl]methyl)benzoic Acid (VIII)
$5.22 \mathrm{~g}(0.02 \mathrm{~mol})$ of the acid I was suspended in 200 ml of water and 2 ml of bromine was slowly added dropwise under stirring. The mixture was stirred for 2 h at room temperature, the product was collected on a filter and purified; yield 6.64 g of the acid V'III.

4-[(2-Amino-4,6-dioxo-5-allyl-3,4,5,6-tetrahydro-5-pyrimidinyl)methyl]benzoic Acid (X)

To a solution of $2.76 \mathrm{~g}(0.12 \mathrm{~mol})$ of sodium in 40 ml of methanol was added $7.64 \mathrm{~g}(0.08 \mathrm{~mol})$ of guanidine hydrochloride, the suspension was stirred for $10 \mathrm{~min}, 14.60 \mathrm{~g}(0.04 \mathrm{~mol})$ of triethyl 2-allyl-2-(4-carboxybenzyl)-1,3-propanedioate ($X V$) was added and the mixture was stirred for 4 h at room temperature. Methanol was distilled off under the reduced pressure of a water pump and 80 ml of $0.5 \mathrm{~m}-\mathrm{NaOH}$ was added to the residue. The mixture was stirred for 2 h at room temperature and left standing overnight. Following a brief boil it was acidified with dilute (1:1) hydrochloric acid to pH 2 and the separated product was collected on a filter and purified; yield 6.95 g of the acid X.

[REFERENCES

1. Kotva R., Křepelka J., Řežábek K., Vachek J.: This Journal 46, 2217 (1981).
2. Semonský M., Černý A., Křepelka J., Kotva R., Kakáč B., Holubek J., Vachek J.: This Journal 45, 3583 (1980),
3. Kotva R., Křepelka J., Semonský M.: This Journal, in press.
4. Kotva R., Křepelka J., Černy̌ A., Pujman V., Semonský M.: This Journal 46, 1397 (1981).
5. Kotva R., Křepelka J., Vachek J.: This Journal 47, 2525 (1982).
6. Brenner M., Müller M. R., Pfister R. W.: Helv. Chim. Acta 33, 568 (1950).
7. Brenner M., Pfister R. W.: Helv. Chim. Acta 34, 2091 (1951).
8. Brenner M., Huber W.: Helv. Chim. Acta 36, 1109 (1953).
9. Johnson T. B., Kohmann E. F.: Amer. Chem. J. 49, 192 (1913).
10. Ǩeřicha V., Protiva M.: Chem. Listy 44, 232 (1950).
11. Wood H. B., jr, Horning E. C.: J. Amer. Chem. Soc. 75, 5511 (1953).

[^0]: ${ }^{a}$ IR spectrum: 1740 (ester), 3440,3200 (NH), 1620 (lactam); ${ }^{b}$ Crystallized from aqueous dimethylformamide; ${ }^{c}$ In methanol; ${ }^{d}$ IR spectrum: 1724 (ester), 3410,3390 (primary amine). 1640 (lactam), 1570, 1620 (benzene ring); ${ }^{e}$ Crystallized from aqueous ethanol; ${ }^{\int}$ IR spectrum: 1710 (ester), $3420,3320\left(\mathrm{NH}_{2}\right), 3100(\mathrm{NH}), 1550,1650$ (secondary amide), $1500,810,1680$ (disubstituted benzene ring); ${ }^{g}$ Crystallized from a mixture dimethylformamide-methanol; ${ }^{h}$ IR spectrum: 1720 (ester), $3460,3370(\mathrm{NH}), 1650$ (lactam), 1500,1630 (benzene ring); ${ }^{i}$ IR spectrum: 1705 (ester), 3 380, 3450 (prim. amine), 3080 (NH), 1610, 1550 (sec. amide), 2680 (OH ,

